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ABSTRACT

POPULATION BASED MODEL OF GONORRHEA AND INTERVENTIONS

AGAINST INCREASED ANTIBIOTIC RESISTANCE

BY

COURTNEY NICOLE HENRY

Masters of Science

Virginia Commonwealth University

Richmond, Virginia, 1998

Gonnorrhea is an infectious sexually transmitted disease (STD) caused by the

bacterium Neisseria gonorrhoeae that commonly reproduces in the reproductive

tract.The Centers of Disease Control and Prevention (CDC) estimate that more

than 700,000 individuals in the U.S. contract new gonorrheal infections per year.

During recent years, there has been a progressive global increase of drug-resistant

strains of gonorrhea. Therefore, there exists the necessity for health organizations

to encourage the monitoring, research and development of innovative treatment

regimens.

We have developed multiple mathematical models to explore the gonorrheal

disease state. The �rst objective of model formulation was to �t the model to

viii
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established disease and population data provided by the CDC and U.S. Census

Bureau and then include the presence of antibiotic resistance in the model. Ad-

ditionally, we discuss intervention methods to combat this resistance. The second

objective of model formulation was to use parameter sensitivity to determine spe-

ci�c age groups to target in e¤ort to alter disease dynamics.

ix
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CHAPTER 1

THE CHARACTERISTICS OF GONORRHEA AND

MODELING THE SPREAD OF DISEASE

Gonorrhea has been reported as the second most common infectious disease ac-

quired in the United States [13]. The CDC (Centers for Disease Control and

Prevention) estimates that there are approximately more than 700,000 acquired

gonorrheal infections per year [13]. In 2010, the rate of gonorrheal infection in the

United States was 100.8 per 100,000 population [4]. The highest reported rates in

the United States are marked by the population age groups of adolescents (ages

15-19 years) and young adults (ages 20-24 years) [4]. In 2010, the rate of infec-

tion for adolescents was 570.9 per 100,000 population and the rate of infection for

young adults was 560.7 per 100,000 population [4].

Gonorrhea is a sexually transmitted disease (STD) caused by the bacterium

Neisseria gonorrhoeae that multiplies in the reproductive tract, which includes the

cervix, uterus, fallopian tubes, and urethra [22]. Untreated gonorrhea can lead

to severe complications in both women and men. In women, untreated gonorrhea

can lead to pelvic in�ammatory disease, which is the infection of the uterus,

fallopian tubes, and other reproductive organs [13]. Pelvic in�ammatory disease
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can cause infertility, ectopic pregnancy, abscess formation, and chronic pelvic

pain [13]. In men, untreated gonorrhea can lead to epididymitis, a condition of

the ducts attached to the testicles, which can cause infertility [13]. In both men

and women, it is possible for untreated gonorrhea to spread to the blood or joints

and/or increase the contraction of HIV (Human Immunode�ciency Virus) [27].

The development of antibiotic resistance in Neisseria gonorrhoeae is an in-

creasing public health concern. Currently in the United States, gonorrhea control

strategy relies primarily on e¤ective antibiotic therapy. Consequently, drug resis-

tance is a signi�cant issue requiring careful monitoring, research and scienti�c de-

velopment of new treatment regimens. The bacterium has progressively developed

resistance to sulfonilamides, penicillin, tetracycline, and cipro�axin which were

previously used as e¤ective antibiotic treatments [22]. Currently the CDC STD

treatment guidelines recommend dual therapy, which includes a cephalosporin

antibiotic, typically ceftriaxone, and either azithromycin or doxycycline to treat

the majority of gonococcal infections present among adults and adolescents [13].

Dual therapy is recommended so as to hinder the potential emergence of gono-

coccal cephalosporin resistance [13].

Surveillance of antimicrobial resistance in Neisseria gonorrhoeae in the United

States is focused through the Gonococcal Isolate Surveillance Project (GISP).

GISP was formed in 1986 to monitor trends in antimicrobial susceptibilities of

strains of Neisseria gonorrhoeae so as to establish a rational basis for the selection

2
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of gonococcal therapies [15]. In support of the project, the GISP advises clinicians

to report any Neisseria gonorrhoeae specimen with decreased cephalosporin sus-

ceptibility and any gonorrhea cephalosporin treatment failure to the CDC through

their state and local public health authorities [15]. Challenges of monitoring

emerging antimicrobial resistance arise due to the signi�cant decline in the capa-

bility of laboratories to use essential techniques for gonorrheal culturing required

for antibiotic susceptibility testing [12]. Currently, there is an increased use of

newer, non-culture-based laboratory technology, yet this technology does not pro-

vide greater reliability in comparison to culture-based techniques to perform an-

tibiotic susceptibility testing [12]. Therefore, a greater employment of laboratory

culture-based technology is sought [12].

Between 1970 to 1980 the emergence of gonococcal resistance to penicillin and

tetracycline was established [22]. Within recent years, gonococcal resistance to �u-

oroquinolones was established [12]. Resistance was �rst documented in Asia then

soon emerged in the United States [22]. Emergence �rst developed in Hawaii then

continued development in surrounding western states, initially becoming prevalent

in homosexual men [22]. Currently, gonococcal resistance is present in all regions

of the United States [12]. This caused the CDC to discontinue recommending any

�uoroquinolone regimens for the treatment of gonorrhea in 2007 [12]. Though,

currently, cephalosporins remain an e¤ective treatment for gonococcal infections,

health care providers are advised to be vigilant in regards to treatment failure

3



www.manaraa.com

[22]. Health care providers are advised to report resistance cases to state and

local health departments [12]. State and local health departments are encouraged

to promote the maintenance of laboratory capability to culture Neisseria gonor-

rhoeae, allowing for the testing of isolates in reference to cephalosporin resistance

[12]. State and local health departments are further encouraged to develop en-

hanced surveillance and response protocols for gonorrhea treatment failures and

to report gonococcal treatment failures to the CDC [12].

The GISP monitors antimicrobial susceptibilities in Neisseria gonorrhoeae

through the ongoing testing of approximately 5,900 male urethral gonococcal iso-

lates obtained annually from consecutive symptomatic men at 25 to 30 sexually

transmitted disease clinics in the United States [25]. Antibiotic susceptibility is

measured by minimum inhibitory concentration (MIC) [25]. MIC is de�ned as

the lowest concentration of an antibiotic that inhibits visible growth of bacterium

[25]. The GISP has analyzed MIC�s to cephalosporins among gonococcal isolates

collected from 2000 to 2010 [25]. Decreased antibiotic susceptibility in reference

to the cephalosporins ce�xime or ceftriaxone is de�ned by the Clinical and Labo-

ratory Standards Institute (CLSI) as an MIC greater than 0.5 �g/mL [25].

GISP tested an average of 5,865 isolates for antibiotic susceptibility annually

from 2000 to 2010 [25]. Overall, the percentage of isolates with ce�xime MIC�s

greater than 0.25 �g/ML increased from 0.2% to 1.4% from 2000 to 2010 [25]. The

percentage of isolates with ceftriaxone MIC�s greater than 0.125 �g/mL increased
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from 0.1% to 0.3% from 2000 to 2010 [25]. In the western region of the United

States, the percentage of isolates with ce�xime MIC�s greater than 0.25 �g/mL

increased from 0% to 3.3% and the percentage of isolates with xetriaxone MIC�s

greater than 0.125 �g/mL increased from 0% to 0.5% from 2000 to 2010 [25]. In

the western region of the United States, the most prominent increases in ce�xime

MIC�s were observed in Honolulu, Hawaii with an increase from 0% to 7.7% and in

California with an increase from 0% to 4.5% from 2000 to 2010 [25]. An increase

in ceftriaxone MIC�s from 0% to 0.6% was observed in California from 2000 to

2010 [25].

Communicable diseases, both epidemic and endemic, are frequently examined

in mathematical epidemiology [23]. Mathematical epidemiology involves the use

of mathematical models to analyze the progression of infectious disease [23]. An

infectious disease is classi�ed as an epidemic when the number of expected dis-

ease cases, based on recent experienece, is exceeded, occurring in a community or

region during a speci�ed period of time [23]. An infectious disease is classi�ed as

an endemic when the disease is present in a community at all times but in low

frequency [23]. In the mathematical modeling of disease transmission, there exist

simple models, which exclude most disease-speci�c details, designed to highlight

only general qualitative behavior [23]. Also, there exist detailed models, designed

for the inclusion of disease-speci�cs containing short-term quantitative predictions

[23]. A qualitative approach does not attempt to examine explicit solutions of a
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modeling system, but does attempt to examine general behavior of the model-

ing system [23]. A simple model provides the general framework and structure

necessary for the construction of a detailed model. Both a simple and detailed

model assist in answering a variety of questions of interest raised by public health

o¢ cials. A primary general topic of interest concerns the severity of an epidemic

[23]. More speci�cally, health o¢ cials are interested in the number of individu-

als a¤ected, thus requiring treatment, the longevity of the epidemic, and/or the

e¤ectiveness of quarantine or isolation in reducing the severity of the epidemic

[23].

Most early developments in the mathematical modeling of communicable dis-

ease can be attributed to the work of public health physicians. The �rst known

result in mathematical epidemiology is a defense of the practice of inoculation,

commonly referred to as the introduction of a serum, vaccine, or antigenic sub-

stance into the body of a human or animal subject, to produce or boost immunity

to a speci�c disease [3]. Daniel Bernoulli, trained as a physician, discovered this

extraordinary result, recognized in 1760 [3].

The �rst contributor to modern mathematical epidemiology is owed to P.D.

En�ko between the years 1873 and 1894 [3]. The foundations of the complete ap-

proach to epidemiology employing compartmental models was designed by public

health physicians Sir Ross, R.A., W.H. Hamer, A.G. McKendrick, W.O. Kermack

and statistician J. Brownlee between the years 1900 and 1935 [3]. A particularly
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instructive example of the signi�cant contribution of emlploying compartmental

models was provided by the work of Sir Ross, R.A in reference to the communica-

ble disease malaria [3]. Ross was awarded the second Nobel Prize in Medicine for

his demonstration of the transmission dynamics of malaria between mosquitoes

and humans [3]. Ross formulated a mathematical model that predicted the dis-

missal of malaria outbreaks provided the mosquito population maintain below a

critical threshold level [3]. Field trials supported his conclusions which lead to

substantial successes in disease malaria control strategies [3].

The basic compartmental models used to describe the transmission of com-

municable diseases are contained in a sequence of three papers produced by W.O.

Kermack and A.G. McKendrick in the years 1927, 1932, and 1933 [3]. The �rst

of these papers describes general epidemic models [3]. One model described is

the Kermack-McKendrick epidemic model, which is a special case of the gen-

eral epidemic model referenced in the paper [3]. The general epidemic model

includes dependence on age of infection, which was employed in the mathematical

modeling of HIV and AIDS (Acquired Immune De�ciency Syndrome) [3]. The

Kermack-McKendrick model, proposed in 1927, is referred to as the general sus-

ceptible, infected, and recovered (SIR) model, Figure 1.1 [3]. The model provides

the framework for a vast variety of mathematical epidemiologic models.

Many forms of SIR models are used to model the dynamics of a variety of

infectious diseases present in a population studied over a speci�ed period of time.

7
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Figure 1.1: SIR Model Schematic: Three compartments of general SIR model

shown. Compartments are susceptible (S), infected (I), and recovered (R).

One form of the SIR model commonly employed in the research study of infectious

disease is the SEIR model. The SEIR model contains one additional compartment

than the SIR model, which is the compartment representing exposed individuals,

noted as E. The infected population is then split into infected individuals who in-

cubate the disease but display no disease symptoms and the infectious individuals

who do have external disease symptoms [5]. One such study used the SEIR model

to explore the infectious disease Ebola hemorrhagic fever, commonly referred to

as Ebola [26]. Another such study of the SEIR model was used to analyze Dengue

Fever. Dengue Fever is a virus-caused disease that is spread by mosquitoes, preva-

lent in Latin America and Southeast Asia [34].The model focused on analyzing

the �xed point and eigenvalues of the dynamical system in order to determine sys-

tem behavior [34]. Model simulations were performed given formulated parameter

values to show breeding rates reaching an endemic and non-endemic state [34].

These are two examples of the many uses of mathematical modeling in studying

infectious diseases.

In Hethcote�s review of infectious modeling he notes the numerous reviews

8
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and books produced in reference to mathematical modeling in epidemiology. He

shares that recent models of epidemiological study have involved aspects such as

passive immunity, gradual loss of vaccine and disease-aquired immunity, stages of

infection, vertical transmission, disease vectors, macroparasitic loads, age struc-

ture, social and sexual mixing groups, spatial spread, vaccination, quarantine, and

chemotheraphy [21]. He further shares the the fact that recent epidemiological

models have been formulated to study some diseases such as measles, rubella,

chickenpox, whooping cough, diptheria, smallpox, malaria, rabies, herpes, and

HIV/AIDS [21].

Many epidemiological model incorporate age dynamics to study speci�c dis-

eases. In research by Dietz [6], [7], Hethcote [18], Anderson and May [1], [2], and

Rouderfer, Becker, and Hethcote [32], the continuous age-structure model for the

research study of measles and rubella vaccination strategies was proposed. In a

study by Hethcote [20] was proposed the optimal ages of vaccination for measles

on three continents. Halloran et al, Ferguson [17], Anderson, and Garnett [11]

and Schuette and Hethcote [33]all used age-structured models to study the e¤ects

of varicella (chickenpox) vaccination programs.

The 2010 review by Funk et al. looks at the current state of behavioral disease

models. Funk explains that behavioral changes can be involved in the interpre-

tation of the disease outbreak data to explain decreases in transmission rate [31],

[28], yet is often there is little detail explaining how these speci�c reactions are

9
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quanti�ed and discovered in a systematic way. In this review Funk explains ap-

plying a restrictive study to models which focus exclusively on "self-initiated,

voluntary behavior" and "behavioral reactions to information from the outside

world", common to many behavioral mathematical models [16]. He further ex-

plains that both the source and type of information in relation to disease presence

is a major factor in determing behavioral dynamics [16].

In a research study by Hethcote, he examines the transmission dynamics

and control of gonorrhea [19]. Hethcote employs a discrete SIS model, to focus on

the e¤ects of population dynamics determined by the characteristics of gonococ-

cal disease [19]. Hethcote then develops more speci�c, detailed models to explore

both e¤ective screening and possible vaccination strategies [19]. Hethcote further

examines the dynamics of disease in a sub-popuation of hetersexual and homosex-

ual males and females [19]. All developed models were used to analyze the future

disease state.

In this research project, we will start from a basic model, focused on the in-

fectious population, and develop the model to include both age and behavioral

dynamics. Studied in this research project was the development of three math-

ematical models used to capture population dynamics in reponse to the spread

of gonorrhea. All mathematical models present in this research project used the

framework of a general SIR/SIRS model to mimic population dynamics in re-

sponse to the spread of the infectious disease. The SIR model is a compartmental

10
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disease model which expresses the amount of individuals in speci�ed compart-

ments (classes) throughout a disease time course [9]. Compartments of the SIR

model are susceptible (S) individuals , infected (I) individuals , and recovered (R)

individuals. Individuals are classi�ed into one of these compartments depending

on the individuals contraction of the disease [24]. If an individual has not acquired

the disease, then the individual is classi�ed as susceptible. Once an individual has

acquired the disease, the individual is classi�ed as infected. When the individual is

cured of the disease, the individual is classi�ed as recovered. Each member of the

population has the ability to transition from one compartment to the next com-

partment, progressing from the classi�cation of susceptible to infected to recovered

[24]. In formulating the mathematical model we develop di¤erential equations for

the number of individuals in each compartment. In formulating the mathemat-

ical model as a system of di¤erential equations, the assumption exists that the

epidemic process is deterministic in which the behavior of a population is solely

determined by its history and by the interactions described by the model [23].

Figure 1.1 shows a �ow diagram of all compartments with arrows representing

transition between compartments of the typical SIR model. The model we used in

the research study slightly extends this model and is called the SIRS model. The

SIRS model is described similarly to the SIR model, but includes a transition rate

from the recovered compartment to the susceptible compartment. The transition

rate from the infected class to the recovered class may account for isolation from

11
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the rest of the population, immunization against infection, recovery from the

disease with full immunity against re-infection, or death caused by the disease [9].

Total population, denoted asN , is N = S+I+R. The SIRS model assumesN

remains constant as total population typically does not signi�cantly alter within

a time interval in which an infectious disease is typically measured.

The SIRS model uses a set of di¤erential equations to model infectious dis-

ease population dynamics over time. The set of di¤erential equations used are

dS
dt
; dI
dt
, and dR

dt
with solution S(t), I(t), and R(t). Transition rates used in the

general SIRS model are �; ;and f . � represents the rate at which a suscepti-

ble individual becomes infected or contracts the disease,  represents the rate at

which an infected individual becomes recovered or is alleviated from the disease

and f represents the rate at which a recovered individual becomes susceptible or

"loses immunity" from the disease. The SIRS model schematic displaying each

transition rate is shown in Figure 1.2.

The general SIRS model equations are then

dS
dt
= ��SI + fR

dI
dt
= �SI � I

dR
dt
= I � fR:

The equations describe the population dynamics due to the presence of disease

at any speci�ed time of interest. The di¤erential equation for the suceptible pop-

ulation is determined by the rate of loss due to susceptible individuals becoming

12
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Figure 1.2: SIRS Model Schematic: Transition rates, indicated by arrows, between

each compartment shown. Each compartment de�ned as in SIR model.

infected. In addition, the second term is the gain due to recovered individuals

losing immunity from the disease. The di¤erential equation for the infected pop-

ulation is determined by a rate of gain due to susceptible individuals becoming

infected. In addition, the second term is the rate of population loss due to infected

individuals recovering. The di¤erential equation for the recovered population is

determined by the rate of gain due to infected individuals recovering. In addition,

to the second term accounts for the recovered individuals losing immunity and

becoming susceptible.

We developed three mathematical models to model the population dynamics

of gonorrhea using the general SIRS model equations as a starting point. Several

parameters were created and added to the general SIRS model in order to tailor

to the speci�c characteristics of gonorreal infection. Speci�c to each model are

13
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data sets collected from the CDC and U.S. Census Bureau in which information

concerning gonorrhea infection rates and total population are described. The

primary goal of each model is to match these particular data sets by developing

model equations and �tting unknown parameters. Other signi�cant objectives of

the research study are to model the e¤ect of gonorrhea�s antibiotic resistance on

population dynamics and to explore parameter sensitivity in relation to population

dynamics. Overall these objectives will assist in the aid of examining the future

state of disease in order to allow for awareness and prevention e¤orts.

Each model further divides total population, as simple models progress to

detailed models. The �rst model studies the disease course in the total popula-

tion. The second model studies disease course with age-speci�c variables. The

age-speci�c variables (populations) are adolescents, young adults and adults older

than 25 years. The third model studies disease course in reference to behavioral

age-speci�c populations based on the knowledge of disease contraction. The be-

havioral age-speci�c populations are adolescents, young adults and adults older

than 25 both unknowing and knowing of the contraction of disease. Disease con-

traction among adolescents and young adults are of particular attention since

gonorrheal infection rates are highest among adolescents and young adults caused

by a combination of behavioral, biological, and cultural factors [13].

14
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CHAPTER 2

MODELING GONORRHEA WITH VITAL DYNAMICS

AND ANTIBIOTIC RESISTANCE

The �rst model used in the study considers no subdivision of total population.

Model one equations are

dS
dt
= ��SI + fR + �(S + I +R)� �S

dI
dt
= �SI �  1

1+�
I � �I

dR
dt
=  1

1+�
I � fR� �R:

These model equations include parameters, which were added to the general

SIRS model, in order to model gonorrhea and vital dynamics. Here, parameters

� and � represent total population birth and death rate, respectively. Birth and

death are referred to as the vital dynamics of a population. Birth rate is de�ned as

the measure of childbirths per 1,000 population per year and death rate is de�ned

as the measure of deaths per 1,000 population per year. The model assumes birth

and death rate are equal, thus total population remains constant with respect to

time. More speci�cally, dN
dt
= dS

dt
+ dI

dt
+ dR

dt
= 0: The parameter � models the

level of gonococcal antibiotic resistance. The expression 1
1+�

is used to measure

antibiotic resistance. This expression was used due to the ease of it�s e¤ectiveness
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in capturing the e¤ect of antibiotic resistance on system dynamics. As higher �

levels of antibiotic resistance response increases, individual transition rate from

the infected class to the recovered class decreases, thus a¤ecting model parameter

. Infected individuals transition at slower rates to the recovered class due to the

individuals inability to overcome the presence of the bacterial infection in the body.

Parameters �; ;and f represent the transition rates between each compartment

as previously described. The only constraint on model parameters is that they

are positive.

2.1 Model Fit

The �rst objective of the model was to �t the model and parameters to known

disease and population data. This will establish the presence of the disease state in

a population extending beyond the time displayed in the data set. Virginia disease

reports and total population were used in the model �tting, published by the CDC

and the U.S. Census Bureau from 2001 to 2010, respectively. Virginia disease

reports and total population data was chosen for use in research project due to its

relevance in regards to research location. After model equations were developed,

data driven equilibrium and parameter values were sought. According to the

data, in e¤ort to model disease dynamics, total population, N(t) = S(t) + I(t) +

R(t), must remain steady or constant at approximately 7,500 which represents

the average Virginia total population from 2001 to 2010. For modeling purposes
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Figure 2.1: Number of Reported Gonorrhea Cases and Total Population Data

for Virginia: Scatter plot represents Virginia�s total number of reported cases of

gonorrhea (A) and total population (B) from 2001-2010. The red line of (A) and

(B) represents average value of of each data set.

we have scaled all population data by 1,000. Similarly, according to the data,

the model disease dynamics of the infected population, I(t), must be steady or

constant at approximately 8.6, which represents the number of reported gonorrhea

cases in Virginia from 2001 to 2010, scaled appropriately. Figure 2.1 displays the

data representing Virginia�s total population and Virginia�s total reported cases

of gonorrhea from 2001 to 2010, respectively. The red solid line displayed in each

plot indicates the average of the data set, which we will use to determine the

equilibrium values of total individuals and infected individuals in this model.
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Equilibrium Values

S I R

6898.432 8.584 80.984

Parameter Values

�  f � � �

4.5319*10�5 0.305 0.0247 0.00763 0.00763 0

Table 2.1: Virginia Model Equilibrium and Parameter Values: Parameter values

and cooresponding equilibrium values of Virginia gonorrhea model.

The presence of the disease state is acheived at the noted target values. The

speci�ed parameter values in Table 2.1 were used to model Virginia�s dynamics

of disease state from years 2001 to 2010. Parameters � and � are parameters of

established values, as they represent average U.S. birth and death rate from 2001

to 2010. All other parameter values were unknown, thus data driven. Shown in

Table 2.1 are the equilibrium values and parameter values produced by the model.

Model equilibrium and parameter values show Virginia total population equal to

6988 and Virginia�s total reported cases of gonorrhea equal to approximately 8.584.

Therefore, the model data accuarately forms an approximation to the given data.

Next, we sought to model the e¤ect of disease dynamics given an arbitrary

initial amount of infected individuals, 1,000, introduced into a host population

of susceptible individuals, thus modeling earlier gonococcal disease presence in

18



www.manaraa.com

Virginia. We then were able to produce the transients for each population class,

Figure 2.2. End dynamics match the Virginia total population and total disease

cases data for 2006-2010. Initial conditions used for Figure 2.2 were S(0) = 6987,

I(0) = 1, and R(0) = 0. Figure 2.2 exhibits a typical disease time course for each

population class with noted equilibrium values attained.

In Figure 2.2 (A), (B), and (C) we see a gradual transition among all popula-

tion states until we reach steady state. All transients are montonically increasing

or decreasing to this state. At the ending time of each subplot, all populations

reach values approximating the known Virginia population and infectious disease

data. Note that the model assumes birth rate and death rate are equivalent,

therefore total population remains constant throughout the disease time course.

We know this is not historically correct, but because we are using this model for

current dynamics during which we neglect increase in population, thus this �gure

is a qualatative description of a possible disease course.

In the study of epidemiology, the basic reproduction number, R0 =
�S(0)
�+�

> 1,

de�ned as the average number of secondary infections that occur when only one

infected individual is introduced into a completely susceptible host population, is

often calculated [21]. This calculation is of particular interest in epidemiological

study because the magnitude of R0 allows one to determine the e¤ort necessary

to prevent an epidemic or to eliminate an infection from a population [8]. For our

model parameters we get R0 = 20:750:
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Figure 2.2: Virginia Model Transients: Subplots represent the disease state at

equilibrium among the susceptible (A), infected (B), and recovered (C) popula-

tion classes. Initial conditions used to create disease time course are S(0) = 6987,

I(0) = 1, and R(0) = 0:Time values from 1591-1600 represent the disease dynam-

ics of Virginia from 2001-2010. Population scaled by 1,000.
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� Equilbrium Values

S I R N

0 6898.432 8.584 80.984 6988

0.25 5552.417 167.96 (1856.664%) 1267.623 (1465.276%) 6988

0.5 4655.075 320.048 (90.55%) 2012.878 (58.792%) 6988.001

0.75 4014.116 465.336 (45.396%) 2508.54 (24.625%) 6987.992

1 3533.397 604.271 (29.857%) 2850.333 (13.625%) 6988.001

Table 2.2: Virginia Model Equilibrium Values at Various Levels of Antibiotic Re-

sistance: Equilibrium values for the susceptible, infected, and recovered popula-

tions attained. Percentage increase of infected and recovered population between

each consecutive level of antibiotic resistance shown in parenthesis.

2.2 Modeling Antibiotic Resistance

Another signi�cant objective was to model the e¤ect of antibiotic resistance on

disease population dynamics. As described above, the model parameter signifying

a measured level of antibiotic resistance is �: As � increases, the rate of transition

from the infected class to the recovered class decreases. Table 2.2 presents the

equilibrium values attained for the susceptible, infected, and recovered class at

various values of �.

Table 2.2 veri�es that as � increases, there is a slower transition from the

infected class to the recovered class. In Table 2.2 we see a higher rate of increase

of the size of the infected class as � increases than the rate of increase of the size
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of the recovered class. Note, total population, N , remains constant among all

values of �. Given the nonlinearity of the � term, we see a decrease in the percent

change as we increase � by 0.25.

To combat resistance we looked at which disease term to target. Using �

held constant at various increased levels, we increased and decreased all other

parameter values by 20% from original equilibrium state in to examine their e¤ects

on the disease dynamics. The parameter sensitivity analysis was constructed

in order to discover if adjusting the parameter value � or f was more e¤ective

at controlling the infected population dynamics at speci�ed levels of �. More

speci�cally, we were interested in whether the rate of contracting the disease or

the rate of developing safe practice post disease is more e¤ective in controlling

disease dynamics. Both parameter values � and f are the only model parameters

that are behavior-dependent. Therefore, they are practical to target and adjust in

reference to parameter sensitivity analysis. Table 2.3 shows the model parameter

sensitivity analysis.

In order to determine which parameter is more sensitive to parameter alter-

ation, the percent change between the number of infected at orginal equilibrium

state, displayed in Table 2.2, and the number of infectives after a 20% and increase

and decrease for each parameter was calculated.

As previously described, increased values of � cause the presence of a higher

number of infected individuals. Table 2.3 also supports this claim. Table 2.3 shows
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� 20% �I 20% �D 20% fI 20% fD

0 118.843 (1273.749%) 0 (-100%) 9.829 (13.617%) 7.438 (-14.022%)

0.25 276.312 (64.430%) 5.637 (-96.645%) 190.316 (13.255%) 144.957 (-13.738%)

0.5 426.58 (33.246%) 160.49 (-49.869%) 361.484 (12.913%) 277.033 (-13.466%)

0.75 570.129 (22.491%) 308.419 (-33.737%) 524.036 (12.588%) 403.984 (-13.205%)

1 707.402 (17.043%) 449.88 (-25.565%) 678.607 (12.279%) 526.104 (-12.953%)

Table 2.3: Virginia Model Parameter Sensitivity Analysis: Total number of indi-

viduals in the infected class recorded. Displayed in parenthesis is percent change

between the altered value of infected and the original value of infected present at

equilibrum.Original infected values at steady state were 8.584, 167.96, 320.048,

465.336, and 604.27. Subscript I and D are used to denote percentage increase

and decrease for each parameter, respectively.
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that altering model parameter � produces a greater percentage increase of infec-

tives than the percentage increase due to altering f . Because model parameter

� directly e¤ects the population size of the infected class, increasing or decreas-

ing � will cause greater population change in comparision to model parameter f

which indirectly e¤ects population size of the infected class. As both parameters

experience a 20% increase and decrease, the change in calculated percent change

decreases as � values increase.

Table 2.3 supports that model parameter � exhibits greater sensitivity to

alteration in comparison to model parameter f . This parameter shows that there

are greater percent increase and decrease changes present among all levels of

antibiotic resistance. More speci�cally, Table 2.3 supports that the rate of disease

transmission has a heavier in�uence on the dynamics of the disease state than

the rate of "immunity loss" because model parameter � has a direct e¤ect on the

infected population size.

XPPAUT, a computer program tool for solving and analyzing di¤erential

equations, was used to produce the model simulations and determine the pa-

rameter values for this model [10].
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CHAPTER 3

MODELING GONORRHEA WITH VITAL DYNAMICS,

ANTIBIOTIC RESISTANCE, AND AGE DYNAMICS

The second model we developed expands the �rst model by incorporating age dy-

namics. Included in this model is a subdivision of total population according to

age group, accompanying age group transition. Each population class of suscepti-

ble, infected, and recovered, catergorizes age groups as adolescent, young adult or

older. The adolescent age group comprise a population aged 15 to 19, the young

adult age group comprise a population aged 20 to 24 and the older age group

comprise a population aged above 24. Gonorrhea rates among each age distribu-

tion have experienced marked di¤erences through the progression of recent years.

Reported by the CDC, gonorrhea rates were highest among adolescents and young

adults in 2010 [13]. In 2010, the highest rates were recorded among women aged

15 to 19 years and 20 to 24 years. From 2009 to 2010, gonorrhea rates displayed

an increase among most all age sectors [13]. The largest gonorrhea rate increases

were observed among those aged 20 to 24 years and 30 to 34 years. Gonorrhea

rate decreases were observed among those aged 35 to 39 years and above 54 years

[13].
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3.1 Model Fit

The second model equations are represented by

dSA
dt
= �(�AAIASA + �AY IY SA + �AOIOSA) + fRA � �SA+

�(SA + IA +RA + SY + IY +RY + SO + IO +RO)� �SA

dIA
dt
= �AAIASA + �AY IY SA + �AOIOSA �  1

1+�
IA � �IA � �IA

dRA
dt
=  1

1+�
IA � fRA � �RA � �RA

dSY
dt
= �(�Y AIASY + �Y Y IY SY + �Y OIOSY ) + fRY + �SA � �SY � �SY

dIY
dt
= �Y AIASY + �Y Y IY SY + �Y OIOSY �  1

1+�
IY + �IA � �IY � �IY

dRY
dt
=  1

1+�
IY � fRY + �RA � �RY � �RY

dSO
dt
= �(�OAIASO + �OY IY SO + �OOIOSO) + fRO + �SY � �SO

dIO
dt
= �OAIASO + �OY IY SO + �OOIOSO �  1

1+�
IO + �IY � �IO

dRO
dt
=  1

1+�
IO � fRO + �RY � �RO:

Each population subgroup A (adolescent), Y (young adult), and O (older) is

contained in compartments S, I, and R. Therefore, introduced variables of model

two are SA, IA, RA, SY , IY , RY , SO, IO, andRO, which represent all age-dependent

population classes. Introduced parameters of model two are �AA, �AY , �AO, �Y A,

�Y Y , �Y O, �OA, �OY , �OO and �:
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The � parameters each represent the rate of gonorrheal infection between each

age-dependent population class. Each rate is speci�c to the interaction between

each pair of age-dependent population classes. Thus �AA describes the rate of

gonorrheal infection contracted from an infected adolescent to a susceptible ado-

lescent, �AY describes the rate of gonorrheal infection contracted from an infected

young adult to a susceptible adolescent, �AO describes the rate of gonorrheal in-

fection contracted from an infected older to a susceptible adolescent, etc. CDC

reports that, within recent years, the largest increases of gonorrheal infection are

observed among young adults [4]. As a result � parameters �Y A, �Y Y ; and �Y O

used in the model were chosen to be largest in comparison to all other � pa-

rameters because these parameters describe the rate that young adults contract

gonorroheal infection from all age groups.

The parameter � represents the rate of transition of age among each age-

dependent population class. As each subgroup ages, there is transition to and

from cooresponding classes. All subgroups transition in the order of adolescent,

young adult, older. The model neglects the time delay previous to entering the

adolescent class, therefore introduced population members are included in the

susceptible adolescent (SA) aged-dependent population class. It was necessary

that the parameter � be chosen so as to reasonably increase total population,

N = SA+ IA+RA+SY + IY +RY +SO+ IO+RO, at each time step as the model

assumes no decreases or signi�cant increases in total population within the small
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Year A Reported Cases Y Reported Cases O Reported Cases

2006 9.6104 11.0465 14.5446

2007 9.826 11.1418 14.0688

2008 9.7069 10.8747 12.6013

2009 8.6996 10.0645 10.9468

2010 8.825 10.5619 11.1591

Table 3.1: Gonorrheal Disease by Age Group Data: Data represents the total

number of reported cases of gonorrhea, or total number of infected, from 2006-

2010 for each age-dependent population. Reported older gonorrhea cases found

by taking the sum of number of reported gonorrhea cases for those individuals

aged 25 and older. Note that all data was scaled by 10,000.

speci�ed time span modelled.

Similar to the Virginia model, there were three objectives to explore with this

age-dependent model. The �rst objective was to �t the given model to known data,

the second objective was to observe population dynamics in reponse to increased

levels of antibiotic resistance, and the third objective was to observe parameter

� and f sensitivity in reference to their e¤ect on the population dynamics of the

infected classes.

Shown is the known data, reported by the CDC, Table 3.1, and model �t,

Figure 3.1. The scatter plot of each age-dependent population represents the data

of total U.S. reported gonorrheal cases from 2006-2010. The solid line represents
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Figure 3.1: Age Dynamics Model Data Fit: Data of the total U.S. reported cases

of each age-dependent population is represented as a scatter plot. Cooresponding

model simulation represented as a solid line. Here the residual error is 0.529,

0.386, and 9.254 for plots (A), (B), and (C), respectively.
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the model data acquired applying appropriate parameters and initial conditions.

The objective of this data overlay is to closely match actual and model data so

that model data may represent actual data in e¤ort to conduct analysis regarding

future disease trends. This �t was obtained using parameters and initial conditions

described in Table 3.2 and Table 3.3. The initial conditions were determined using

the infected population data, Table 3.1, and total U.S. population data for 2006.

The initial recovered population of each aged-class was formed by taking 3% of

total population, an observation characteristic of the �rst model. The initial

susceptible population of each age- dependent class was formed by subtracting

both the infected and recovered population from U.S. total population, which

yields the remaining total population.

In e¤ort to model the population dynamics of U.S. gonorrheal cases, it was nec-

essary to �rst �nd the value of the model parameter �. We simulated the system

with only age-related dynamics to determine the parameter �: Only parameters

�, �, and � were non-zero because these parameters control population dynamics

without regards to the in�uence of disease. We found � = 0:0001 properly models

U.S. total population data, from 2006 to 2016.

After the model parameter � was found, the full disease model was used to �t

the data of the number of U.S. reported cases of gonorrhea from 2006-2010. The

number of reported cases of each age-dependent population group translate as the

size of each cooresponding infected class. All � parameters were estimated in order
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Parameter Parameter Value

�AA 4.097*10�6

�AY 4.903*10�7

�AO 7.179*10�10

�Y A 4.097*10�7

�Y Y 8.9029*10�6

�Y O 1.218*10�6

�OA 1.097*10�10

�OY 1.9029*10�9

�OO 1.18*10�10

f 0.00247

� 0.0001

 0.0305

� 0.000763

� 0.000763

� 0

Table 3.2: Age Dynamics Model Parameters: Displayed are model parameters

used for model �t. All parameters account for scaling of population by 10,000.
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S I R

Adolescent 2019.2416 9.6104 62.748

Young Adult 1967.0745 11.0465 61.179

Older 18598.3003 14.5447 575.655

Table 3.3: Age Dynamics Model Initial Conditions: Displayed are initial condi-

tions used for model �t. Initial conditions determined by 2006 total U.S. reported

cases of gonorrhea and 2006 total U.S. population. U.S. Census Bureau estimates

total 2006 U.S. population were 2091.6, 2039.3, and 19188.5 for adolescents, young

adults, and older, respectively. All population scaled by 10,000.

to �t the data. In e¤ort to estimate all � parameters, data reported from the CDC

in reference to gonorrheal infection rates speci�c to each age distribution were

used to obtain general initial estimates. All � parameters were then individually

tweaked from the initial estimate until they matched the number of reported cases

during the years 2006, 2007, 2008, 2009, and 2010 in which data was collected. All

other parameters were recycled from the Virginia model and scaled appropriately

in accordance with all other scaled model parameter values of the age dynamics

model.

3.2 Modeling Antibiotic Resistance

Objective two of the model observes age-dependent infective class population

dynamics in reponse to increased � values. Recall, as � values are increased, the
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Figure 3.2: Age Dynamics Model Antibiotic Resistance: Displayed in each graph

(A-C) is the total number of infectives of each age-dependent population at spec-

i�ed values of �, labeled by color.

expression  1
1+�

decreases. Therefore, higher levels of antibiotic resistance cause

a lower transition rate from the infected class to the recovered class. Figure

3.2 shows the age-dependent infective class population in response to increased �

values.

Each plot was scaled appropriately to give an accuarate estimate of increase

in the infective population between each � value. The � values chosen, � =

0; 0:25; 0:75; 1, were used so as to capture a vast range of infected population data

among all age distributions. Recall, as � levels increase, the model term  1
1+�

decreases, causing individuals of the infected class to persist at longer time inter-

vals within this class. Figure 3.2 (C) and (B) show that the older age-dependent

population experiences the lowest rates of gonorrheal infection as � levels increase,
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while, the young adult age-dependent population experiences the highest rates of

gonorrheal infection as � levels increase. The slope of each graph for � in the older

population has a higher negative value than the slope of each plot in (A) and (B).

Plot (A) actually experiences a postive slope at � = 0:75 and � = 1, unlike plots

(B) and (C), which experience no positive slope at any values of �. Because the

young adult population experiences the highest rate of disease contraction at each

increased level of antibiotic resistance, this infected group may start to increase if

antibiotic resistance increases signi�cantly.

Objective three of the age dynamics model was to observe model parameter

� and f sensitivity in reference to their e¤ect on the age-dependent population

dynamics of the infected classes. Sensitivity analysis of ��s and f model para-

meters was performed in e¤ort to determine which parameter contributes most

to the population dynamics of the infected class among all age groups. Recall

that the parameter ��s describe the transition rates from the susceptible class to

the infected class and model parameter f describes the transition rate from the

recovered class to the susceptible class. Similar to model one, all parameters were

increased and decreased by 20% from their original values noted in Table 3.2. The

number of infected within each age-dependent population class at each speci�ed

level of � was recorded for 2016 after model parameter increase and model para-

meter decrease. The purpose of recording nformation for 2016 is to infer future

disease state trends. The analysis of parameter sensitivity follows, Table 3.4.
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IA % IA % IA % IA % IA %

�=0 Change �=0.25 Change �=0.5 Change �=0.75 Change �=1 Change

�AAI 7.788 0.486 8.379 8.112 8.727 12.602 8.984 15.918 9.182 18.473

�AAD 7.618 -1.707 8.097 4.473 8.433 8.809 8.682 12.021 8.873 14.486

�AY I 7.768 0.228 8.257 6.538 8.56 10.447 8.853 14.228 9.048 16.744

�AYD 7.73 -0.262 8.217 6.022 8.558 10.422 8.81 13.673 9.004 16.176

�AOI 7.749 -0.017 8.237 6.280 8.579 10.692 8.832 13.957 9.026 16.460

�AOD 7.749 -0.017 8.237 6.280 8.579 10.692 8.832 13.957 9.026 16.460

IY % IY % IY % IY % IY %

�=0 Change �=0.25 Change �=0.5 Change �=0.75 Change �=1 Change

�Y AI 9.697 -1.830 10.307 4.380 10.734 8.704 11.051 11.915 11.294 14.375

�Y AD 9.671 -2.061 10.279 4.096 10.706 8.421 11.021 11.611 11.264 14.072

�Y Y I 10.026 1.534 10.657 7.924 11.099 12.401 11.426 15.712 11.678 18.264

�Y Y D 9.353 -5.281 9.941 0.673 10.354 4.856 10.659 7.945 10.894 10.325

�Y OI 9.684 -1.929 10.293 4.238 10.72 8.562 11.036 11.763 11.279 14.224

�Y OD 9.684 -1.929 10.293 4.238 10.72 8.562 11.036 11.763 11.279 14.224

Table 3.4: Age Dynamics Model Parameter Sensitivity: Displayed are number of

infected in 2016 within the adolescent and young adult populations after noted

disease transmission rates experience percent increase and decrease, denoted by

subscript I and D, respectively. Original values are 7.750, 9.875, and 10.652 in-

fected A, Y, and O, respectively. 35
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.

Model parameters �OA, �OY ; �OO; and f and variable IO were not included

in the sensitivity table, Table 3.4, due to their very insigni�cant change in the

number of infectives after they were increased and decreased by 20%. Also, IY

and IO are not included for the �A�s because there was no signi�cant change in

these variables when the �A�s were increased and decreased. Similarly, IA and

IO are not included for the �Y �s. Similar to model one, Table 3.4 shows an in-

creased number of infected individuals among all age-dependent populations as

� is increased. This is due to the fact that higher levels of antibiotic resistance

cause a lessening of the individual�s ability to become recovered. The model is

most sensitive to a 20% increase and decrease of �AA and �Y Y . These parame-

ters experience the greatest overall percent change among all levels of �. Both

�AAand �Y Y have the largest average percent change among all other � parame-

ters displayed in Table 3.4. Recall, �AA describes the rate of disease contraction

from an infected adolescent to a susceptible adolescent and �Y Y describes the

rate of disease contraction from an infected young adult to a susceptible young

adult. Therefore, it can be concluded that a 20% change in the rate of infection

within each individual adolescent and young adult population has the greatest

e¤ect on disease dynamics. Table 3.4 also shows that model parameter �AA is the

most sensitive parameter, experiencing the greatest percentage change among all

values of �, or, more speci�cally, �AA displays the largest average percent change
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in comparison to all other � parameters. It can be concluded that a 20% change

in the rate adolescents contract gonorrhea from other adolescents will have the

greatsest impact on disease dynamics within their own age group. Thus, in order

to combat the growth of disease due to antibiotic resistance, sexual health e¤orts

must focus adolescent disease awareness and prevention.

3.3 Aggressive Screening

Often those individuals with gonococcal infections experience mild symptoms

or an absence of symptoms, which is the primary cause for disease incline. More

commonly, individuals experience no symptoms [4]. Even if symptoms of health

complications appear, typically one to fourteen days after infection, symptoms

are often very non-speci�c and mistaken for more common health infections, fre-

quently excluding any sexually transmitted infections [4].

The aggressive screening model extends the age dynamics model by includ-

ing disease awareness to in�uence behavioral dynamics related to whether or not

an individual knows that they have gonococcal infection. This model further

subdivides each infected aged class into both knowing individuals of gonoccocal

infection and unknowing individuals of gonoccocal infection. Aggressive screen-

ing will allow the unknowing individual to transition to the knowing individual at

a faster rate. Model equations are represented by

dSA
dt
= �(�AAIAUSA + ��AAIAKSA + �AY IY USA + ��AY IY KSA + �AOIOUSA+
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��AOIOKSA) + fRA � �SA + �(SA + SY + SO + IAK + IAU + IY K ++IY U+

IOU + IOK +RA +RY +RO)� �SA

dIAU
dt

= �AAIAUSA + ��AAIAKSA + �AY IY USA + ��AY IY KSA + �AOIOU+

��AOIOKSA � �IAU � tAIAU � �IAU

dIAK
dt

= �( 1
1+�
IAK)� �IAK + tAIAUK � �IAK

dRA
dt
=  1

1+�
IAK � fRA � �RA � �RA

dSY
dt
= �(�Y AIAUSY +��Y AIAKSY +�Y Y IY USY +��Y Y IY KSY +�Y OIOUSY+

��AOIOKSY ) + fRY + �SA � �SY � �SA

dIY U
dt

= �Y AIAUSY + ��Y AIAKSY + �Y Y IY USY + ��Y Y IY KSY + �Y OIOUSY+

��Y OIOKSY + �IAU � �IY U � tY IY U � �IY U

dIYK
dt

= �( 1
1+�
IY K) + �IAK � �IY K + tY IY UK � �IY K

dRY
dt
=  1

1+�
IY K � fRY + �RA � �RY � �RY

dSO
dt
= �(�OAIAUKSO+��OAIAKSO+�OY IY UKSO+per�OY IY KSO+�OOIOUKSO+

��AOIOKSO) + fRO + �SY � �SO

dIOU
dt

= �OAIAUSO + ��OAIAKSO + �OY IY USO + ��OY IY KSO + �OOIOUSO+

��AOIOKSO+ �IY U � tOIOU � �IOU

dIOK
dt

= �( 1
1+�
IOK) + �IY K + tOIOUK � �IOK

dRO
dt
=  1

1+�
IOK � fRO + �RY � �RO:
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The added model parameters tA, tY , and tO represent the behavioral transition

rate from the unknowing infected individual to the knowing infected individual

of each age-dependent population present in all infected class equations. The

subscript of each rate denotes the cooresponding age-dependent population. This

transitional rate represents the rate of action an infected individual becoming

informed of gonococcal infection, thus in�uencing individual behavior to stop

the spread of disease and seek medical attention. Therefore, the value � 1
1+�

is only included in the infected knowing population class of each age-dependent

population because an individual may only recover from disease contraction once

that individual has developed knowledge of contracting the disease. Once an

unknowing individual becomes a knowing individual, that individual may begin

recovery from disease. The added parameter value � is used to account for the drop

in the rate of disease transmission for an unknowing individual compared to the

rate of disease transmission for a knowing individual. Therefore, 0 < � < 1, since

the model assumes that knowing infected individuals are characterized by smaller

disease transmission rates than unknowing infected individuals among all age-

dependent populations. Rather than developing new transmission rates, we take

� = 0:25, which was discovered in regards to the model �tting process. Note that

the parameter � is de�ned as in the age dynamics model. Therefore, unknowing

infected individuals and knowing infected individuals transition are also capable

of transitioning between each age-dependent population class. In this model, all
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terms in each equation are de�ned as is the age dynamics model with the exception

of terms involving tA, tY , tO, and �. With these added parameters, this model

now exhibits three types of transitions. There is a transition of class, age, and

awareness of disease.

The three objectives of this model include �tting the given model to known

data, comparing the model to the age dynamics model in reference to infected

and infected knowing individuals, respectively, and observing parameter tA, tY ,

and tO sensitivity in reference to their e¤ect on the population dynamics of the

infected unknowing and knowing age-dependent population classes. Sensitivity

analysis was key in the employment of model three in which to discover the model

parameter, tA, tY , or tO, to cause the largest percent change in the number of

infected unknowing individuals among all values of �.

3.3.1 Model Fit

The �rst objective was to �t the aggressive screening model to the same data

as we �t to the age dynamics model. The model �t follows, Figure 3.3, along with

the new parameters � = 0:25, tA = tY = tO = 0:009 and initial conditions used,

Table 3.5.

Model simulations shown in Figure 3.3 show the �t of model�s three system to

the established data. Note that the established data represents the total number

of knowing infected individuals in each age-dependent infective population class.
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Figure 3.3: Aggressive Screening Model Data Fit: Data of the total U.S. reported

cases of each age-dependent population is represented as a scatter plot. Coore-

sponding model simulation represened as a solid line. Model shows similar �t to

data as Virginia model. Here the residual error is 0.525, 0.346, and 13.131 for

plots (A), (B), and (C), respectively.

S I Unknowing I Knowing R

Adolescent 2008.7416 10.5 9.6104 62.748

Young Adult 1953.5745 13.5 11.0465 61.179

Older 18585.0503 13.25 14.5447 575.655

Table 3.5: Aggressive Screening Model Initial Conditions: Shown are initial con-

ditions used for model �t. Recall, initial conditions represent disease dynamics of

age-dependent population classes cooresponding to 2006. Initial conditions scaled

by 10,000.
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Therefore, these data values, in reference to 2006, were used as model three ini-

tial values of the infected knowing population class. As characterized by the age

dynamics model, the recovered population data values represent approximately

3% of total population of each age-dependent population. The infected unknow-

ing population data values were arbitrarily chosen in e¤ort to �t the established

data, assuming both the adolescent and young adult populations contain a greater

number of individuals unaware of disease contraction supported by their higher

infection rates in comparison to the older infected population class. It is assumed

that adults (older) are more knowledgable and responsible in regards sexual health

awareness and prevention compared to the adolescent and young adult population.

The susceptible population initial data values must equal total population of each

age-depedent population excluding the infected unknowing, infected knowing and

recovered population classes.

The second objective of the model was to compare both infected and infected

knowing transients for both the non-screening and screening model, Figure 3.4.

Figure 3.4 shows that the models display similar data pertaining to the number

of infected adolescent individuals seen in plot (A). The models show deviation

from one another pertaining to the number of infected young adult and older

population seen in plot (B) and (C). All plots shows that deviation increases as

time increases. Therefore, both models will display similar adolescent population

dynamics and dissimilar young adult and older population dynamics given the
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Figure 3.4: Age Dynamics and Aggressive Screening Model Transient Compar-

isons: Transients for both model infected and infected knowing shown for each

age-dependent population, indicated by colors blue and red, respectively. Recall,

all data scaled by 10,000.

43



www.manaraa.com

same initial conditions and parameters, characteristic of each model. Because the

residual error of the young adult and older population in the aggressive screening

model is smaller than in the age dynamics model, the aggressive screening model

provides a more accurate depiction of the presence of U.S. gonorrhea from 2006-

2010.

3.3.2 Modeling Antibiotic Resistance

The third objective of the model was to perform model parameter sensitivity

analysis on parameters tA, tY , and tO. The goal is to discover which parameter

is most sensitive to percent change. To conduct sensitivity analysis, one parame-

ter was increased by 50%, while the other two parameters were kept at original

value. The unknowing infected adolescent, young adult, and older population was

recorded among all levels of �, shown in Table 3.6 . The model parameter which

causes the greatest change in the number of unknowing infected individuals of each

age-dependent population will determine the target age-dependent population for

aggressive disease screening initatives.

In Table 3.6 the enlarged percentage values show the highest percentage

change at each transitional percentage increase. Recall, data cooresponds to the

year 2016. Table 3.6 shows a percent decrease of infected unknowing individuals

among all values of � for all population groups. As unknowing infected individ-

uals of each population experience an increase in their discovery rate of disease
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�=0 % % % �=0.25 % % %

IAU Change IY U Change IOU Change IAU Change IY U Change IOU Change

tA 10.262 -4.290 15.504 -0 .013 12.038 0.000 10.269 -4.279 15.52 -0 .006 12.038 0.000

tY 10.719 -0 .028 14.856 -4.192 12.037 -0 .008 10.726 -0 .019 14.871 -4.188 12.037 -0 .008

tO 10.722 0.000 15.5 -0 .038 11.508 -4.403 10.728 0.000 15.517 -0 .026 11.508 -4.403

�=0.5 % % �=0.75 % % %

IAU Change IY U Change IOU IAU Change IY U Change IOU Change

tA 10.273 -4.277 15.531 -0 .006 12.038 0.000 10.276 -4.285 15.538 -0 .013 12.038 0.000

tY 10.73 -0 .019 14.882 -4.185 12.037 -0 .008 10.733 0.028 14.89 -4.183 12.037 -0 .008

tO 10.732 0.000 15.527 -0 .032 11.508 -4.403 10.36 -3 .502 15.535 -0 .032 11.509 -4.394

�=1 % % %

IAU Change IY U Change IOU Change

tA 10.278 -4.284 15.545 -0 .006 12.038 0.000

tY 10.735 -0 .028 14.896 -4.181 12.037 -0 .008

tO 10.738 0.000 15.541 -0 .032 11.509 -4.394

Table 3.6: Aggressive Model Parameter Sensitivity: Total number of un-knowing

individuals of each population�s infected class recorded. Percentages in table rep-

resent calculated percent change from the original value of infected unknowing A,

Y, and O, respectively. Original values are 10.722, 15.506, and 12.038 of A, Y,

and O, respectively. 45
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contraction, the number of unknowing infected individuals decline. The model pa-

rameter sensitivity analysis explains that as the level of antibiotic resistance rises,

the number of unknowing individuals increase, though individuals are transition-

ing at a 50% higher rate into the knowing infected class among all populations.

Thus, higher levels of antibiotic resistance prove to be a catalyst in reference to

gonorrheal disease presence.

At each level of �, tA, tY , and tO experience the greatest percent change in

relation their cooresponding populations. For example, at � = 0 the greatest

percent changes are �4:290%, �4:192%, and �4:403%, diagonal entries enlarged.

Similarly, at � = 0:25 the greatest percent changes are �4:279%, �4:188%, and

�4:403%. All other increased values of � display similar information. Therefore,

it can be con�rmed that the most signi�cant change in the number of infected un-

knowing age-dependent populations is witnessed by increasing each cooresponding

population behavioral parameter by 50%. Table 3.6 also shows that the behav-

ioral parameter from most sensitive to least sensitive are tO, tA, and tY . For

example, at � = 0:75 the percent change in the number of each population group

of unknowing infected individuals is �4:394%, �4:285%, and �4:183%, describ-

ing the cooresponding percent change in the parameter most sensitive to least

sensitive, respectively. These results conclude that the tO is the most sensitive

behavioral parameter. Because we assume the older population group is more

responsible and knowledgable of sexual health and wellness, we conclude that it is
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more practical to target initiatives toward the adolescent population. This pop-

ulation currently has high disease contraction rates and we would assume more

receptive to disease awareness and prevention due to a lack of sexual health and

wellness knowledge and sexual experience. Therefore, health organizations must

focus agressive screening e¤orts geared toward the young adult population so as to

control an incline of disease contraction. Health organizations must seek extensive

gonorrheal awareness programs tailored to the young adult population in order to

inform the population of necessary disease screening and protection.
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CHAPTER 4

SUMMARY AND CONCLUSION

Recent CDC estimates suggest that adolescents and young adults, who represent

only 25% of the sexually experienced U.S. population, acquire nearly half of all

sexually transmitted diseases[13]. Adolescents and young adults are at higher risk

of aquiring sexually transmitted diseases (STD�s) due to behavioral, biological,

and cultural factors [13]. Higher prevalence of sexually transmitted diseases among

this population group likely re�ects multiple barries to accessing quality STD

prevention services [30]. Intervention e¤orts must address key aspects of the

social and cultural conditions that a¤ect sexual risk-taking behavior present in

the adolescent and young adult population. In e¤ect, strategies require design

to improve these social and cultural condition to inhibit an incline in population

disease contraction.

The CDC aims to improve the health of populations disproportionally a¤ected

by sexually transmitted disease by funding e¤orts to improve health equity, which

is de�ned as the absence of disparities in health among population groups in a

social hierarchy [14]. CDC�s Division of STD Prevention (DSTDP) Community

Approaches to Reducing Sexually Transmitted Diseases (CARS) is a current ini-

tiative to enable funding receipients to extend the reach of prevention services [14].
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The goal of CARS is to "use community engagement methods and partnerships

to build local STD prevention and control capacity in supporting the planning,

implementation, and evaluation of innovative, interdisiplinay interventions to re-

duce STD disparities, promote sexual health, and advance community wellness"

[14]. It is evident that a greater number of similar e¤orts concerning sexually

transmitted disease disparties are required in order to advance national health

equity.

The purpose of all models developed in the research study was to study small

and wide-scale population dynamics in response to the acquirement of gonorrheal

infection. This research topic is of national primary concern due to the emergence

of antibiotic resistance of gonococcal infection and it�s characterization by mild

or absence of physical symptoms. Therefore, there is a possibility of rapid dis-

ease increase among all U.S. age-dependent populations. All developed models

employed in the research study support the necessity of large-scale gonorrheal in-

fection awareness, screening and prevention e¤orts, targeting dispartities within

the adolescent and young adult populations.

The age-independent model �t to the established data describing Virginia�s

total number of reported cases of gonorrhea from 2001-2010. With this model

we studied the system�s population dynamics resulting from increased levels of

antibiotic resistance. It was shown that higher levels of antibiotic resistance cause

a larger percent increase in the size of the infected class and a smaller percent
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increase in the size of the recovered class. Also the model dynamics are most

sensitive to alteration in �, causing a greater percentage change in infected indi-

viduals among all levels of antibiotic resistance. Therefore, a change in disease

transmission rate will exhibit more impact on the infected class compared to a

change in "immunity loss", equivalent to unsafe practices causing a transition

back into the susceptible population .

The age dynamics model extends the Virginia model by including age classes.

We �t this model�s dynamics to the established data of total U.S. reported cases

of gonorrhea from 2006-2010 of each age group. With this model we to studied

the population dynamics resulting from increased levels of antibiotic resistance.

As in the �rst model, we con�rmed an increasing rate of all age-dependent pop-

ulation infected classes and a decreasing rate of all age-dependent population

recovered classes resulting from increased � values. Population groups of ado-

lescents and young adults experienced the greatest increase in disease presence

between each increased level of antibiotic resistance. We performed parameter

sensitivity analysis of model parameter f and the � parameters respective to year

2016. Parameter sensitivity analysis concluded that the model was most sensitive

to alteration in �AA among levels of �: Thus we concluded that rate of disease

transmission increased or decreased by 20% within the adolescent population will

have the greatest e¤ect on the change of disease dynamics as antibiotic resistance

increases.We �nally concluded that this population must be a primary target in
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relation to gonorrheal disease awareness and prevention promotions.

The last model was extended by dividing all age-dependent population in-

fected classes into unknowing and knowing individuals. This model was, again,

�t to the established data of total U.S. reported cases of gonnorrhea from 2006-

2010. Comparing the residual error of both models, the aggressive screening model

proves more reliable in representing the U.S. gonorrheal disease state from 2006-

2010. A �nal sensitivity analysis was used to determine which age-dependent

population to target in reference to disease early detection and screening e¤orts.

Sensitivity analysis concluded that the adolescent age group should be targeted.

Therefore, increasing the rate in which the un-informed adolescent becomes in-

formed will have the most in�uence on the disease dynamics. This information

suggests that intervention methods highlighting the details of screening practices

tailored to the adolescent population should prove successful and therefore, re-

quire immediate attention in e¤ort to dissolve the high rate of transmission of

gonoccoal infection especially among adolescents.

Future work concerning the extension of these models developed to represent

the recent U.S. disease state of gonorrheal infection may include further subdivi-

sions of each age-dependent infective class and the creation of a dynamic model

parameter �. New models may include age-dependent population infective classes

further subdivided according to the disparities of disease presence. Subdivisions

of sex, race, and geographical region are of particular interest due to substantial
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inequalites speci�c within each subdivision of population. Reported by the CDC,

in 2010 the rate of gonococcal infection among women was 106.5 per 100,000

population compared to 94.1 per 100,000 population amongst men. In 2010, the

CDC reported a gonococal infection rate of 432.5 per 100,000 population amongst

African Americans compared to 23.1 per 100,000 population among whites, 105.7

per 100,000 population amongst American Indians/Alaska Natives, and 49.9 per

100,000 population amongst Hispanics [27]. Reported by the CDC, in 2010 the

rate of gonococcal infection was amongst the Southern U.S. was 134.2 per 100,000

population compared to the Midwest of 108.5 per 100,000 population, the North-

east of 77.4 per 100,000 population, and the West of 58.7 per 100,000 population

[27]. Extending the last model to include further subdivisions of all infected classes

will aid in analyzing, monitoring and developing predictions regarding future dis-

ease state trends speci�c to disparities present in our population. Awareness,

screening, and prevention methods must be accuaretly tailored in e¤ort to com-

bat the growing disparities of disease contraction.

Newly formed models may also incorporate the presence of a dynamic �. There

exist biological factors and mechanisms by which microorganisms in�uence and

develop antibiotic resistance [29]. The new model equation, d�
dt
, may incorporate

these biological details to model the level of antibiotic resistance. The inclusion

of a dynamic � will allow for the simultaneous monitoring of antibiotic resistance

levels and population size of the infectious class among all subgroups.
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Overall, all developed models succeed in accurately representing the U.S. re-

cent gonorrheal disease state trends. Models may be further analyzed in devel-

oping future predictions necessary to aid in disease intervention. Models con-

clude that targeting the disease transmission rate of the young adult population

is primary to alleviating the severely disproportionate rate young adults contract

gonococcal infection. The formulated models highlight the urgency of health or-

ganizations to ensure the vast expansion of sexual health equity, primarily among

adolescents and young adult populations.
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